题目内容
椭圆C:
+
=1(a>b>0)的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是( )
x2 |
a2 |
y2 |
b2 |
A.(
| B.(
| C.(
| D.(
|
①当点P与短轴的顶点重合时,
△F1F2P构成以F1F2为底边的等腰三角形,
此种情况有2个满足条件的等腰△F1F2P;
②当△F1F2P构成以F1F2为一腰的等腰三角形时,
以F2P作为等腰三角形的底边为例,
∵F1F2=F1P,
∴点P在以F1为圆心,半径为焦距2c的圆上
因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,
存在2个满足条件的等腰△F1F2P,
此时a-c<2c,解得a<3c,所以离心率e>
当e=
时,△F1F2P是等边三角形,与①中的三角形重复,故e≠
同理,当F1P为等腰三角形的底边时,在e>
且e≠
时也存在2个满足条件的等腰△F1F2P
这样,总共有6个不同的点P使得△F1F2P为等腰三角形
综上所述,离心率的取值范围是:e∈(
,
)∪(
,1)
△F1F2P构成以F1F2为底边的等腰三角形,
此种情况有2个满足条件的等腰△F1F2P;
②当△F1F2P构成以F1F2为一腰的等腰三角形时,
以F2P作为等腰三角形的底边为例,
∵F1F2=F1P,
∴点P在以F1为圆心,半径为焦距2c的圆上
因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,
存在2个满足条件的等腰△F1F2P,
此时a-c<2c,解得a<3c,所以离心率e>
1 |
3 |
当e=
1 |
2 |
1 |
2 |
同理,当F1P为等腰三角形的底边时,在e>
1 |
3 |
1 |
2 |
这样,总共有6个不同的点P使得△F1F2P为等腰三角形
综上所述,离心率的取值范围是:e∈(
1 |
3 |
1 |
2 |
1 |
2 |
练习册系列答案
相关题目