题目内容

(理)已知F1,F2是椭圆
x2
100
+
y2
64
=1
的焦点,P为椭圆上一点,且F1PF2=
π
3
,求△F1PF2的面积.
依题意,作图如下:

∵a=10,b=8,故c=
a2-b2
=6,
即|PF1|+|PF2|=2a=20,|F1F2|=2c=12,
又∠F1PF2=
π
3

∴由余弦定理得:|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2
|F1F2|2=(|PF1|+|PF2|)2-2|PF1|•|PF2|-2|PF1|•|PF2|cos∠F1PF2
即4c2=4a2-3|PF1|•|PF2|,
∴|PF1|•|PF2|=
256
3

S△F1PF2=
1
2
|PF1|•|PF2|sin∠F1PF2=
1
2
×
256
3
×
3
2
=
64
3
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网