题目内容
若函数f(x)=loga(x3-ax)>0且a≠1)在区间内单调递增,则实数a的取值范围是
A.
B.
C.
[,1)∪(1,3]
D.
(1,3]
把函数y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为
阅读下面的程序框图,执行相应的程序,则输出的结果是
2
-2
3
-3
已知椭圆+=1(a>b>0)和直线L:-=1,椭圆的离心率e=,直线L与坐标原点的距离为.
(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.
已知函数f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),当0≤x≤1时,,则使的x的值是
2n(n∈Z)
2n-1(n∈Z)
4n+1(n∈Z)
4n-1(n∈Z)
已知函数f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期为
(Ⅰ)求ω的值;
(Ⅱ)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时f(x)的值域.
已知i是虚数单位,则等于
-i
i
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD.
(Ⅰ)证明:BM⊥平面SMC;
(Ⅱ)设三棱锥C-SBM与四棱锥S-ABCD的体积分别为V1与V,求的值.
张先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).
(1)求这7条鱼中至少有6条被张先生吃掉的概率;
(2)以X表示这7条鱼中被张先生吃掉的鱼的条数,求X的分布列及其数学期望EX.