题目内容
把函数y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为
A.
B.
C.
D.
已知直线l的参数方程为,(t为参数),圆C的参数方程为,(为常数).
(Ⅰ)求直线l和圆C的普通方程;
(Ⅱ)若直线I与圆C有公共点,求实数a的取值范围.
对于数对序列P(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak两个数中最大的数,
(1)对于数对序列P(2,5),P(4,1),求T1(P),T2(P)的值.
(2)记m为a,b,c,d四个数中最小值,对于由两个数对(a,b),(c,d)组成的数对序列P(a,b),(c,d)和(a,b).(c,d),试分别对m=a和m=d的两种情况比较T2(P)和T2()的大小.
(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论).
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(Ⅰ)应收集多少位女生样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:K2=
下列命题中,真命题的个数有
①;
②;
③函数y=2-x是单调递减函数.
0个
1个
2个
3个
已知二次函数f(x)=ax2-4bx+1,点(a,b)是区域内的随机点,则函数y=f(x)在区间[1,+∞)上是增函数的概率为________.
已知数列{an}中,a1=4,a2=6,且an+1=4an-3an-1(n≥2)
(1)设bn=an+1-an,求数列{bn}成等比数列.
(2)求m的值及{cn}的前n项和.
在△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为________.
若函数f(x)=loga(x3-ax)>0且a≠1)在区间内单调递增,则实数a的取值范围是
[,1)∪(1,3]
(1,3]