题目内容

直线L的倾斜角为45°,在y轴上的截距是2,抛物线y2=2px(p>0)上一点P0(2,y0)到其焦点F的距离为3,M为抛物线上一动点,求动点M到直线L的距离的最小值.
∵直线L的倾斜角为45°,在y轴上的截距是2,
∴L的方程:y=x+2,即x-y+2=0…(3分)
∵抛物线y2=2px(p>0)上一点P0(2,y0)到其焦点F的距离为3,
∴由定义知:2+
P
2
=3,解得P=2,
∴抛物线的方程是:y2=4x.…(6分)
设M(x,y),则M到直线L的距离为
d=
|x-y+2|
2
=
|
y2
4
-y+2|
2

=
|y2-4y+8|
4
2
=
(y-2)2+4
4
2
2
2
,…(10分)
当y=2时,“=”成立,此时M(1,2),
∴动点M到直线L的距离的最小值是
2
2
.…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网