题目内容
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行天试销,每种单价试销天,得到如下数据:
单价(元) | |||||
销量(册) |
(1)求试销天的销量的方差和对的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是元,
为了获得最大利润,该单元卷的单价应定为多少元?
附: ,
【答案】(1)10,(2)
【解析】
试题分析:(1)先求均值,再根据方差公式求方差:,,根据给出公式求系数,再根据回归直线方程过点求(2)根据利润等于销量乘以单价减去成本得获得的利润,再根据二次函数最值求法得单价应定为元时, 可获得最大利润.
试题解析:(1),
,,,所以对的回归直线方程为:.
(2)获得的利润,二次函数的开口朝下,
当时, 取最大值, 当单价应定为元时, 可获得最大利润.
【题目】第届夏季奥林匹克运动会2016年8月5日到2016年8月21日在巴西里约热内卢举行,为了解我校学生“收看奥运会足球赛”是否与性別有关,从全校学生中随机抽取名进行了问卷调查,得到列联表,从这名同学中随机抽取人,抽到“收看奥运会足球赛 ”的学生的概率是.
男生 | 女生 | 合计 | |
收看 | |||
不收看 | |||
合计 |
(1)请将上面的列联表补充完整,并据此资料分析“收看奥运会足球赛”与性別是否有关;
(2)若从这名同学中的男同学中随机抽取人参加有奖竞猜活动,记抽到收看奥运会足球赛”的学生人数为,求的分布列和数学期望.
参考公式:
,其中
【题目】若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:
分 组 | 频 数 | 频 率 |
[-3,-2) | 0.10 | |
[-2,-1) | 8 | |
(1,2] | 0.50 | |
(2,3] | 10 | |
(3,4] | ||
合计 | 50 | 1.00 |
(1)将上面表格中缺少的数据填充完整.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率.
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.