题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系中, 以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系, 已知点的极坐标为,曲线的参数方程为为参数).
(1)直线过且与曲线相切, 求直线的极坐标方程;
(2)点 与点关于轴对称, 求曲线上的点到点的距离的取值范围.
【答案】(1)根据将极坐标化为直角坐标;根据消参数得普通方程,再根据圆心到切线距离等于半径得切线斜率或,最后根据将直线点斜式化为极坐标方程(2)先得,再根据圆的性质得曲线上的点到点的距离的最小值为,最大值为,即可求取值范围
【解析】
试题解析:(1)由题意得点的直角坐标为,曲线的一般方程为,设直线的方程为,即,直线过且与曲线相切,, 即,解得或,直线的极坐标方程为或.
(2)点与点关于轴对称, 点的直角坐标为,则点到圆心的距离为,曲线上的点到点的距离的最小值为,最大值为,
曲线上的点到点的距离的取值范围为 .
练习册系列答案
相关题目
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行天试销,每种单价试销天,得到如下数据:
单价(元) | |||||
销量(册) |
(1)求试销天的销量的方差和对的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是元,
为了获得最大利润,该单元卷的单价应定为多少元?
附: ,