题目内容
(本小题满分13分)椭圆的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点.(Ⅰ)如果点A在圆(c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;(Ⅱ)若函数的图象,无论m为何值时恒过定点(b,a),求的取值范围.
(Ⅰ) (Ⅱ)
:(1)∵点A在圆,
由椭圆的定义知:|AF1|+|AF2|=2a,
(2)∵函数
∴点F1(-1,0),F2(1,0),
①若,
∴
②若AB与x轴不垂直,设直线AB的斜率为k,则AB的方程为y=k(x+1)
由…………(*)
方程(*)有两个不同的实根.
设点A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根
由①②知
由椭圆的定义知:|AF1|+|AF2|=2a,
(2)∵函数
∴点F1(-1,0),F2(1,0),
①若,
∴
②若AB与x轴不垂直,设直线AB的斜率为k,则AB的方程为y=k(x+1)
由…………(*)
方程(*)有两个不同的实根.
设点A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根
由①②知
练习册系列答案
相关题目