题目内容
【题目】已知椭圆的左、右两个焦点分别为,P是椭圆上位于第一象限内的点,轴,垂足为Q,,,的面积为.
(1)求椭圆F的方程:
(2)若M是椭圆上的动点,求的最大值,并求出取得最大值时M的坐标.
【答案】(1)(2)最大值为,此时点M的坐标为.
【解析】
(1)在中,根据,求出,再根据余弦定理求出,然后由定义求出,然后由求出,从而可得椭圆的方程.
(2)根据面积求出的坐标,再根据二次函数求出的最大值.
(1)在中,由,得,所以,
因为,所以,
所以,所以,
在中,由余弦定理得:,
所以,
所以即,,
,
,
椭圆F的方程为.
(2)设,根据题意可知,所以,代入椭圆方程得,
的坐标为,
令代入椭圆方程,,其中,
当时,的最大值为,
的最大值为,此时点M的坐标为.
练习册系列答案
相关题目
【题目】某中学在全校范围内举办了一场“中国诗词大会”的比赛,规定初赛测试成绩不小于160分的学生进入决赛阶段比赛.现有200名学生参加测试,并将所有测试成绩统计如下表:
分数段 | 频数 | 频率 |
6 | 0.03 | |
0.38 | ||
100 | 0.5 | |
6 | 0.03 | |
合计 | 200 | 1 |
(1)计算的值;
(2)现利用分层抽样的方法从进入决赛的学生中选择6人,再从选出的6人中选2人做进一步的研究,求选择的2人中至少有1人的分数在的概率.