题目内容
(12分)若二次函数
满足
,且
.(1)求
的解析式;(2)若在区间
上,不等式
恒成立,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701709943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701725693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701756482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701772447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701803317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701818706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701834337.png)
(1)
;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701881401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701865634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701881401.png)
(1)先根据
,得:
,然后再根据
化简整理后可得
,从而可得a=1,b=-1.进而得到
.
(2)原不等式
可化简为
,即:
,
然后令
求其在工间[-1,1]上的最小值即可.
(1)有题可知:
,解得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701959304.png)
由
.可知:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232347023021125.png)
化简得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702006644.png)
所以:
.∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701865634.png)
(2)不等式
可化简为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702177673.png)
即:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702427711.png)
设
,则其对称轴为
,∴
在[-1,1]上是单调递减函数.
因此只需
的最小值大于零即可,∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702536519.png)
代入得:
解得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701881401.png)
所以实数
的取值范围是:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701881401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701756482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701959304.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701725693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702006644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701865634.png)
(2)原不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701818706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702177673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702208825.png)
然后令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702224686.png)
(1)有题可知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701756482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701959304.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701725693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232347023021125.png)
化简得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702006644.png)
所以:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702349502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701865634.png)
(2)不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701818706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702177673.png)
即:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702427711.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702442800.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702458489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702489442.png)
因此只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702489442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702536519.png)
代入得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234702552606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701881401.png)
所以实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701834337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234701881401.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目