题目内容
【题目】某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).
(1)若设休闲区的长和宽的比=x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?
【答案】(1)(2) 要使公园所占面积最小,休闲区应设计为长100米,宽40米
【解析】
解:(1)设休闲区的宽为a米,则长为ax米,
由a2x=4000,得a=.
则S(x)=(a+8)(ax+20)=a2x+(8x+20)a+160
=4000+(8x+20)·+160
=80(2+)+4160(x>1).
(2)80(2+)+4160≥80×2+4160=1600+4160=5760.
当且仅当2=,即x=2.5时,等号成立,此时a=40,ax=100.
所以要使公园所占面积最小,休闲区A1B1C1D1应设计为长100米,宽40米.
练习册系列答案
相关题目