题目内容
【题目】共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有 是“年轻人”.
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车用户 | 120 | ||
不常使用共享单车用户 | 80 | ||
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)
【答案】解:(Ⅰ)
100|20|60|20于是a=100,b=20,c=60,d=20,
∴K2= ≈2.083>2.072,
即有85%的把握可以认为经常使用共享单车与年龄有关.
(Ⅱ)由(Ⅰ)的列联表可知,经常使用共享单车的“非年轻人”占样本总数的频率为 =10%,
即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1,
∵X~B(3,0.1),X=0,1,2,3,
∴P(X=0)=(1﹣0.1)3=0.729,
P(X=1)= ,
P(X=2)= ,
P(X=3)=0.13=0.001,
∴X的分布列为:
X | 0 | 1 | 2 | 3 |
P | 0.729 | 0.243 | 0.027 | 0.001 |
∴X的数学期望E(X)=0×0.729+1×0.243+2×0.027+3×0.001=0.3
【解析】解:(Ⅰ)补全的列联表如下:
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车 | 100 | 20 | 120 |
不常使用共享单车 | 60 | 20 | 80 |
合计 | 160 | 40 | 200 |
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
【题目】某高中学校共有学生1800名,各年级男女学生人数如表.已知在全校学生中随机抽取1名,抽到高二女生的概率是0.16.
高一年级 | 高二年级 | 高三年级 | |
女生 | 324 | x | 280 |
男生 | 316 | 312 | y |
现用分层抽样的方法,在全校抽取45名学生,则应在高三抽取的学生人数为 .