题目内容

【题目】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函数.
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的单调区间与极值.

【答案】解:(Ⅰ)∵f(x)=x3+bx2+cx,∴f'(x)=3x2+2bx+c.
从而g(x)=f(x)﹣f'(x)=x3+bx2+cx﹣(3x2+2bx+c)=x3+(b﹣3)x2+(c﹣2b)x﹣c
是一个奇函数,所以g(0)=0得c=0,由奇函数定义得b=3;
(Ⅱ)由(Ⅰ)知g(x)=x3﹣6x,从而g'(x)=3x2﹣6,
当g'(x)>0时,x<﹣或x>
当g'(x)<0时,﹣<x<
由此可知是函数g(x的单调递增区间;(-,)是函数g(x)的单调递减区间;
g(x)在x=-时取得极大值,极大值为4,g(x)在x=时取得极小值,极小值为-4
【解析】(1)根据g(x)=f(x)﹣f'(x)是奇函数,且f'(x)=3x2+2bx+c能够求出b与c的值.
(2)对g(x)进行求导,g'(x)>0时的x的取值区间为单调递增区间,g'(x)<0时的x的取值区间为单调递减区间.g'(x)=0时的x函数g(x)取到极值.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网