题目内容

【题目】已知等差数列{an}的通项公式为an=2n﹣1(n∈N*),且a2 , a5分别是等比数列{bn}的第二项和第三项,设数列{cn}满足cn= ,{cn}的前n项和为Sn
(1)求数列{bn}的通项公式;
(2)是否存在m∈N* , 使得Sm=2017,并说明理由
(3)求Sn

【答案】
(1)解:∵a2=3=b2,a5=9=b3,∴公比q=3
(2)解:不存在m∈N*,使得Sm=2017.∵S7=301<2017,S8=2488>2017,而Sn是单调递增的,∴不存在m∈N*,使得Sm=2017
(3)解:cn=

n为偶数时,Sn= + = +

n为奇数时,Sn= + +2n﹣1= +


【解析】(1)由a2=3=b2 , a5=9=b3 , 可得公比q.(2).由于S7=301<2017,S8=2488>2017,而Sn是单调递增的,即可判断出结论.(3)cn= ,n为偶数时,Sn= + .n为奇数时,Sn= + +2n﹣1.
【考点精析】本题主要考查了等差数列的前n项和公式的相关知识点,需要掌握前n项和公式:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网