题目内容
【题目】已知, ,动点满足.设动点的轨迹为.
(1)求动点的轨迹方程,并说明轨迹是什么图形;
(2)求动点与定点连线的斜率的最小值;
(3)设直线交轨迹于两点,是否存在以线段为直径的圆经过?若存在,求出实数的值;若不存在,说明理由.
【答案】(1)轨迹是以为圆心,2为半径的圆;(2);(3).
【解析】试题分析:(1)由直接法,设出点坐标列方程即可;
(2)由直线与圆有公共点可得,即可解得;
(3)根据题意有,坐标化可得,进而直线和圆联立,由韦达定理代入求解即可.
试题解析:
(1),
化简可得: ,轨迹是以为圆心,2为半径的圆
(2)设过点的直线为,圆心到直线的距离为
∴,
(3)假设存在,联立方程,得,
设,则, ,
,∴
,得,
且满足,
∴.
【题目】第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)将分别于2017年3月5日和3月3日在北京开幕.全国两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与者中随机选出200人,并将这200人按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示:
(1)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取12人,再从这12人中随机抽取3人赠送礼品,求抽取的3人中至少有人年龄在第3组的概率;
(2)若从所有参与调查的人(人数很多)中任意选出3人,记关注民生问题的人数为X,求X的分布列与期望;
(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,问是否有的把握认为是否关注民生问题与年龄有关?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.