题目内容
【题目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且B(RA),则实数m的取值范围是 .
【答案】﹣2≤m≤4
【解析】解:集合A={x|(x+2)(x﹣5)>0}={x|x<﹣2或x>5},∴RA={x|﹣2≤x≤5},
∵集合B={x|m≤x<m+1},且B(RA),
∴ ,
解得﹣2≤m≤4,
∴实数m的取值范围是﹣2≤m≤4.
所以答案是:﹣2≤m≤4.
【考点精析】通过灵活运用交、并、补集的混合运算,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法即可以解答此题.
练习册系列答案
相关题目
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);
①;
②;
③
评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
①从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望;
②从样本中随意抽取2件零件,计算其中次品个数的数学期望.