题目内容

【题目】函数y=sin2x+2cosx( )的最大值与最小值分别为(
A.最大值 ,最小值为﹣
B.最大值为 ,最小值为﹣2
C.最大值为2,最小值为﹣
D.最大值为2,最小值为﹣2

【答案】B
【解析】解:y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2,
≤x≤ ,∴﹣1≤cosx≤
则当cosx= 时,y取得最大值,y最大为 ;当cosx=﹣1时,y取得最小值,y最小为﹣2.
故选B
【考点精析】通过灵活运用二次函数的性质和二倍角的余弦公式,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减;二倍角的余弦公式:即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网