题目内容
【题目】如图(1)是一直角墙角,,墙角的两堵墙面和地面两两互相垂直.是一块长为米,宽为米的板材,现欲用板材与墙角围成一个直棱柱空间堆放谷物.
(1)若按如图(1)放置,如何放置板材才能使这个直棱柱空间最大?
(2)由于墙面使用受限,面只能使用米,面只能使用米.此矩形板材可以折叠围成一个直四棱柱空间,如图(2),如何折叠板材才能使这个空间最大?
【答案】(1) 板材与墙面成45°角;(2)见解析.
【解析】分析:(1)设,且 因为直三棱柱的高为定值,故底面面积最大时体积最大,利用基本不等式可得;(2)因为直四棱柱的高为定值,故底面面积最大时体积最大,又的面积为定值,只需寻找面积的最大值,作只需最大即可,设则,可得,利用二次函数的性质可得结果.
详解:(1)设,且
因为直三棱柱的高为定值,故底面面积最大时体积最大
,
当且仅当取到等号.
即板材放置时,使得板材与墙面成45°角.
(2)因为直四棱柱的高为定值,故底面面积最大时体积最大,又的面积为定值,只需寻找面积的最大值.
又在中,只需寻找AB边上高的最大值即可.
如图:作
设则
当时PH最大,此时
即板材放置时,沿中间折叠,使得PA=PB.
【题目】为了检验设备M与设备N的生产效率,研究人员作出统计,得到如下表所示的结果,则
设备M | 设备N | |
生产出的合格产品 | 48 | 43 |
生产出的不合格产品 | 2 | 7 |
附:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,其中.
A. 有90%的把握认为生产的产品质量与设备的选择有关
B. 没有90%的把握认为生产的产品质量与设备的选择有关
C. 可以在犯错误的概率不超过0.01的前提下认为生产的产品质量与设备的选择有关
D. 不能在犯错误的概率不超过0.1的前提下认为生产的产品质量与设备的选择有关