题目内容

【题目】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且.

1)写出年利润W(万元)关于年产量x(千件)的函数解析式;

2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入年总成本)

【答案】1;(2)当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.

【解析】试题分析:本题考查的知识点是分段函数及函数的最值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上xy取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.第一问,由年利润W=年产量每千件的销售收入为Rx成本,又由,且年固定成本为10万元,每生产1千件需另投入2.7万元.我们易得年利润W(万元)关于年产量x(千件)的函数解析式;

第二问,由第一问的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.

试题解析:(1)当时,

时,

.

2时,由,得

且当时, ;当时,

时,W取最大值,且

时,

当且仅当

时,

故当时,W取最大值38

综合①②知当时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网