题目内容

【题目】已知a,b,c分别为△ABC三内角A,B,C的对边,且满足b+ccosA=c+acosC.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积为 ,求△ABC的周长的最小值.

【答案】解:(Ⅰ)由正弦定理得:sinB+sinCcosA=sinC+sinAcosC,…(2分)
又sinB=sin(A+C)=sinCcosA+sinAcosC,…(3分)
∴2cosA=1,A为△ABC内角,

(Ⅱ)在△ABC中
∴bc=4,
由余弦定理:a2=b2+c2﹣2bccosA=b2+c2﹣bc,
周长
当且仅当b=c=2时等号成立,
故△ABC的周长的最小值为6.
【解析】(Ⅰ)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得2cosA=1,结合A为△ABC内角,即可得解A的值.(Ⅱ)由已知利用三角形面积公式可求bc=4,由余弦定理,基本不等式即可求得△ABC的周长的最小值.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网