题目内容
【题目】已知a,b,c分别为△ABC三内角A,B,C的对边,且满足b+ccosA=c+acosC.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积为 ,求△ABC的周长的最小值.
【答案】解:(Ⅰ)由正弦定理得:sinB+sinCcosA=sinC+sinAcosC,…(2分)
又sinB=sin(A+C)=sinCcosA+sinAcosC,…(3分)
∴2cosA=1,A为△ABC内角,
∴ .
(Ⅱ)在△ABC中 ,
∴bc=4,
由余弦定理:a2=b2+c2﹣2bccosA=b2+c2﹣bc,
周长 ,
当且仅当b=c=2时等号成立,
故△ABC的周长的最小值为6.
【解析】(Ⅰ)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得2cosA=1,结合A为△ABC内角,即可得解A的值.(Ⅱ)由已知利用三角形面积公式可求bc=4,由余弦定理,基本不等式即可求得△ABC的周长的最小值.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;.
练习册系列答案
相关题目
【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下
等级 | 1 | 2 | 3 | 4 | 5 |
频率 | 0.05 | m | 0.15 | 0.35 | n |
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.