题目内容
【题目】已知函数f(x)= ,
(1)若a=﹣1,求f(x)的单调区间;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范围.
【答案】
(1)解:当a=﹣1时,f(x)= ,
令g(x)=﹣x2﹣4x+3,
由于g(x)在(﹣∞,﹣2)上单调递增,在(﹣2,+∞)上单调递减,
而y= t在R上单调递减,
所以f(x)在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上 单调递增,
即函数f( x)的递增区间是(﹣2,+∞),递减区间是(﹣∞,﹣2 )
(2)解:令h(x)=ax2﹣4x+3,y= h(x),由于f(x)有最大值3,
所以 h(x)应有最小值﹣1,
因此 =﹣1,
解得a=1.
即当f(x)有最大值3时,a的值等于1
(3)解:由指数函数的性质知,
要使y=h(x)的值域为(0,+∞).
应使h(x)=ax2﹣4x+3的值域为R,
因此只能有a=0.
因为若a≠0,则h(x)为二次函数,其值域不可能为R.
故 a的取值范围是{0}
【解析】(1)当a=﹣1时,f(x)= ,令g(x)=﹣x2﹣4x+3,结合指数函数的单调性,二次函数的单调性和复合函数的单调性,可得f(x)的单调区间;(2)令h(x)=ax2﹣4x+3,y=h(x) , 由于f(x)有最大值3,所以 h(x)应有最小值﹣1,进而可得a的值.(3)由指数函数的性质知,要使y=h(x)的值域为(0,+∞).应使h(x)=ax2﹣4x+3的值域为R , 进而可得a的取值范围.
练习册系列答案
相关题目