题目内容
【题目】一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N。
(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);
(2)证明:直线MN∥平面BDH;
(3)过点M,N,H的平面将正方体分割为两部分,求这两部分的体积比.
【答案】见解析
【解析】解:(1)点F,G,H的位置如图所示.
(2)证明:连接BD,设O为BD的中点,连接OM,OH,AC,BH,MN。
∵M,N分别是BC,GH的中点,
∴OM∥CD,且OM=CD,NH∥CD,且NH=CD,
∴OM∥NH,OM=NH,
则四边形MNHO是平行四边形,∴MN∥OH,
又∵MN平面BDH,OH平面BDH,
∴MN∥平面BDH。
(3)由(2)知OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是GH,底面分别是四边形BMGF和三角形MGC,
体积比等于底面积之比,即3∶1。
练习册系列答案
相关题目