题目内容
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
【答案】见解析
【解析】
解:(1)由题设可知直线l的方程为y=kx+1.
因为直线l与圆C交于两点,所以<1,
解得<k<.
所以k的取值范围为.
(2)设M(x1,y1),N(x2,y2).
将y=kx+1代入方程(x-2)2+(y-3)2=1,
整理得(1+k2)x2-4(1+k)x+7=0.
所以x1+x2=,x1x2=.
=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=+8.
由题设可得+8=12,解得k=1,
所以直线l的方程为y=x+1.
故圆心C在直线l上,所以|MN|=2.
练习册系列答案
相关题目