题目内容
9.函数y=|x-2|的单调递增区间为[2,+∞).分析 画出函数y=|x-2|的图象,数形结合可得函数的增区间.
解答 解:函数y=|x-2|的图象如图所示:
数形结合可得函数的增区间为[2,+∞),
故答案为:[2,+∞).
点评 本题主要考查函数的图象特征,函数的单调性的判断,体现了数形结合的数学思想,属于基础题.
练习册系列答案
相关题目
17.在等比数列{an}中,a1=2,an+1=3an,则其前n项和为Sn的值为( )
A. | 3n-1 | B. | 1-3n | C. | $\frac{1}{{{3^{n-1}}}}-1$ | D. | $1-\frac{1}{{{3^{n-1}}}}$ |
19.抽取某种型号的车床生产的10个零件,编号为A1,A2,…,A10,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.49,1.51]内的零件为一等品.
(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率;
(3)若甲、乙分别从一等品中各取一个,求甲取到零件的直径大于乙取到零件的直径的概率.
编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
直径 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.48 | 1.47 | 1.53 | 1.52 | 1.47 |
(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率;
(3)若甲、乙分别从一等品中各取一个,求甲取到零件的直径大于乙取到零件的直径的概率.