题目内容

8.双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是(  )
A.k>-$\frac{b}{a}$B.k<$\frac{b}{a}$C.k>$\frac{b}{a}$或k<-$\frac{b}{a}$D.-$\frac{b}{a}$<k<$\frac{b}{a}$

分析 设直线方程为:y=k(x-c)代入双曲线方程得:(b2-a2k2)x2+2a2k2cx-a2k2c2-a2b2=0,方程有两根,x1•x2=(-a2k2c2-a2b2)÷(b2-a2k2)<0,因-a2k2c2-a2b2必定小于0,故只需:b2-a2k2>0即可,由此能求出结果.

解答 解:由题意可设直线方程为:y=k(x-c)代入双曲线方程得:
(b2-a2k2)x2+2a2k2cx-a2k2c2-a2b2=0,方程有两根,可设为x1>0,x2<0:
x1•x2=(-a2k2c2-a2b2)÷(b2-a2k2)<0,
因-a2k2c2-a2b2必定小于0,故只需:b2-a2k2>0即可,
所以-$\frac{b}{a}$<k<$\frac{b}{a}$
反之当-$\frac{b}{a}$<k<$\frac{b}{a}$时,直线l与双曲线C的左右两支都相交,
故直线l与双曲线C的左右两支都相交的充要条件是-$\frac{b}{a}$<k<$\frac{b}{a}$,
故选:D.

点评 本题考查必要条件、充分条件、充要条件的判断和应用,解题时要认真审题,注意双曲线的性质的灵活运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网