题目内容

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的动点,求点到曲线上的距离的最小值的值.

【答案】(1) .

(2) 当时,的最小值为.

【解析】分析(Ⅰ)利用三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式把极坐标方程化为直角坐标方程;(Ⅱ)求得椭圆上到直线的距离为,可得的最小值,以及此时的的值,从而求得点的坐标.

详解(Ⅰ)由曲线为参数),曲线的普通方程为:.

由曲线,展开可得:,化为:.

即:曲线的直角坐标方程为:.

(Ⅱ)椭圆上的点到直线的距离为

∴当时,的最小值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网