题目内容
【题目】设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin(A+ )的值.
【答案】
(1)解:∵A=2B, ,b=3,
∴a=6cosB,
∴a=6 ,
∴a=2 ;
(2)解:∵a=6cosB,
∴cosB= ,
∴sinB= ,
∴sinA=sin2B= ,cosA=cos2B=2cos2B﹣1=﹣ ,
∴sin(A+ )= (sinA+cosA)=
【解析】(1)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(2)求出sinA,cosA,即可求sin(A+ )的值.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:,以及对正弦定理的定义的理解,了解正弦定理:.
练习册系列答案
相关题目