题目内容
【题目】如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=3.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求直线PC与平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
【答案】(Ⅰ)证明见解析(Ⅱ).(Ⅲ)﹣.
【解析】
(Ⅰ)由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;
(Ⅱ)求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;
(Ⅲ)求解平面PBE的一个法向量,计算,即可得二面角D﹣PE﹣B的余弦值.
(Ⅰ)PC⊥底面ABCD,,
如图以点为原点,直线分别为轴,建立空间直角坐标系,
则,
,,
,又,平面PAC,
平面PDE,平面PDE⊥平面PAC;
(Ⅱ)设为平面PDE的一个法向量,
又,
则,取,得
,
直线PC与平面PDE所成角的正弦值;
(Ⅲ)设为平面PBE的一个法向量,
又
则,取,得,
,
二面角D﹣PE﹣B的余弦值﹣.
【题目】2017年诺贝尔奖陆续揭晓,北京时间10月2日17:30首先公布了生理学和医学奖,获奖者分别是三位美国科学家霍尔(Jeffrey C. Hall)、罗斯巴什(Michael Rosbash)和杨(Michael W. Ymmg),以表彰他们“发现控制生理节律的分子机制”.通过他们的研究成果发现,人类每天睡眠时间在7-9小时为最佳状态.从某大学随机挑选了100名学生(男生、女生各50名)做睡眠时间统计调查,调查结果如下:
睡眠时间(小时) | |||||||
男生 | 5 | 6 | 12 | 12 | 8 | 5 | 2 |
女生 | 0 | 2 | 6 | 18 | 12 | 10 | 2 |
请根据上面表格回答下列问题:
(1)请分别估计出该校男生和女生的平均睡眠时间;