题目内容
【题目】已知函数,实数.
(1)讨论函数在区间上的单调性;
(2)若存在,使得关于x的不等式成立,求实数a的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)采用分类讨论的方法,与,根据导数判断原函数的单调性,可得结果.
(2)化简式子,并构造函数,计算,然后再次构造函数,利用导数判断的单调情况,可得结果.
(1)由题知的定义域为,
.
∵,,∴由可得.
(i)当时,
,当时,单递减;
(ii)当时,,
当时,,单调递减;
当时,,单调递增.
综上所述,时,在区间上单调递减;
当时,在区间上单调递减,
在区间上单调递增.
(2)由题意:不等式在成立
即在时有解.
设,,只需.
则,因为,
所以在上,,
在上,.
所以在上单调递减,在上单调递增.
因此.
不等式在成立,
则恒成立.
又,所以恒成立.
令,则.
在上,,单调递增;
在上,,单调递减.
所以.
因此解可得且,
即且.
所以实数a的取值范围是.
练习册系列答案
相关题目
【题目】某省开展“精准脱贫,携手同行”的主题活动,某贫困县统计了100名基层干部走访贫困户的数量,并将走访数量分成5组,统计结果见下表.
走访数量区间 | 频数 | 频率 |
b | ||
10 | ||
38 | ||
a | 0.27 | |
9 | ||
总计 | 100 | 1.00 |
(1)求a与b的值;
(2)根据表中数据,估计这100名基层干部走访数量的中位数(精确到个位);
(3)如果把走访贫困户不少于35户视为“工作出色”,按照分层抽样,从“工作出色”的基层干部中抽取4人,再从这4人中随机抽取2人,求其中有1人走访贫困户不少于45户的概率.