题目内容
【题目】已知函数.
(1)若曲线在点处的切线方程为,求的值;
(2)当时,求证:;
(3)设函数,其中为实常数,试讨论函数的零点个数,并证明你的结论.
【答案】(1)或;(2)见解析;(3)见解析
【解析】
(1)根据导数的意义可知,解得切点;
(2)将所证明不等式转化为证明恒成立,设,利用导数证明;
(3)等价于,等价于,且,令,利用导数分析函数的性质,可知函数的极小值0,极大值,讨论当,,,时,结合零点存在性定理确定零点的个数.
(1).所以过点的切线方程为,所以,
解得或.
(2)证明:即证,因为,所以即证,
设,则.
令,解得.
4 | |||
- | 0 | + | |
减 | 极小 | 增 |
所以 当时,取得最小值.
所以当时,.
(3)解:等价于,等价于,且.
令,则.
令,得或,
1 | |||||
- | 0 | + | 0 | - | |
减 | 极小0 | 增 | 极大 | 减 |
(Ⅰ)当时,,所以无零点,即定义域内无零点
(Ⅱ)当即时,若,因为,
,所以在只有一个零点,
而当时,,所以只有一个零点;
(Ⅲ)当即时,由(Ⅱ)知在只有一个零点,且当时,,所以恰好有两个零点;
(Ⅳ)当即时,由(Ⅱ)、(Ⅲ)知在只有一个零点,在只有一个零点,在时,因为,
只要比较与的大小,即只要比较与的大小,
令,
因为,因为,所以,
所以,
即,所以,即在也只有一解,所以有三个零点;
综上所述:当时,函数的零点个数为0; 当时,函数的零点个数为1;当时,函数的零点个数为2;当时,函数的零点个数为3.
练习册系列答案
相关题目