题目内容
【题目】如图1,在正方形中,是的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.
图1 图2
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)设正方形的边长为,由,可得,结合,利用线面垂直的判定定理,即可得到平面.
(2)建立空间直角坐标系,过点作,垂足为,求出向量和平面的一个法向量,利用向量的夹角公式,即可求解.
(1)证明:设正方形的边长为4,由图1知,,
, ,
,,即
由题意知,在图2中,,,平面,平面,且,
平面,平面,.
又平面,平面,且,平面
(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,
在中,, ,从而
,,,
,,.
设平面的一个法向量为,则,
令,则,,.设直线与平面所成角为,
则, .直线与平面所成角的正弦值为..
【题目】根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:
降水量 | ||||
工期延误天数 | 0 | 1 | 3 | 6 |
根据某气象站的资料,某调查小组抄录了该工程施工地某月前天的降水量的数据,绘制得到降水量的折线图,如下图所示.
(1)求这天的平均降水量;
(2)根据降水量的折线图,分别估计该工程施工延误天数的概率.
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频率分布及支持“生育二胎”人数如下表:
年龄 | ||||||
频率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据: , , .
【题目】某商品要了解年广告费(单位:万元)对年利润(单位:万元)的影响,对近4年的年广告费和年利润数据作了初步整理,得到下面的表格:
广告费 | 2 | 3 | 4 | 5 |
年利润 | 26 | 39 | 49 | 54 |
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立关于的回归直线方程;
(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.