题目内容
【题目】已知函数=.
(1)求函数的单调递增区间;
(2)已知在△ABC中,A,B,C的对边分别为a,b,c,若,,求.
【答案】(1)函数的单调递增区间是(2)b=c=2
【解析】
(1)利用诱导公式、二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间;(2)由,求得,利用余弦定理,结合,列方程组可求得的值.
(1)∵ =sin(3π+x)·cos(πx)+cos2(+x),
∴ (cos x)+(sin x)
=,
由 2kπ2x-2kπ+,k∈Z,
可得函数的单调递增区间是k∈Z.
(2)由,得,sin(2A-)+=,
∵0<A<π,∴0<2A<2π,
∵a=2,b+c=4 ①,
根据余弦定理得,
4=+2bccos A=+bc=(b+c)3bc=163bc,
∴bc=4 ②,
联立①②得,b=c=2..
练习册系列答案
相关题目