题目内容
【题目】设数列的前项和为,且.
(1)求证:数列为等比数列;
(2)设数列的前项和为,求证: 为定值;
(3)判断数列中是否存在三项成等差数列,并证明你的结论.
【答案】(1)见解析(2)见解析(3)不存在
【解析】试题分析:(1)依据题设探求出,再运用等比数列的定义进行推证;(2)借助等比数列的前项和公式分别求出, ,然后再求其比值;(3)假设存在满足题设条件的三项,然后运用假设进行分析推证,找出矛盾,从而断定不存在假设的三项:
解:(1)当时, ,解得.
当时, ,即.
因为,所以,从而数列是以2为首项,2为公比的等比数列,所以.
(2)因为,所以,
故数列是以4为首项,4为公比的等比数列,
从而, ,
所以.
(3)假设中存在第项成等差数列,
则,即.
因为,且,所以.
因为,
所以,故矛盾,
所以数列中不存在三项成等差数列.
练习册系列答案
相关题目
【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下
等级 | 1 | 2 | 3 | 4 | 5 |
频率 | 0.05 | m | 0.15 | 0.35 | n |
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.