题目内容
【题目】已知椭圆经过点,且离心率为.
(1)求椭圆的方程;
(2)设点在轴上的射影为点,过点的直线与椭圆相交于, 两点,且,求直线的方程.
【答案】(Ⅰ);(Ⅱ) .
【解析】试题分析:(Ⅰ)本问考查求椭圆标准方程,根据点在椭圆上,代入得,又离心率,于是可以求出的值,得到椭圆标准方程;(Ⅱ)点在轴上的射影的坐标为,过点N的直线分两种情况进行讨论,当斜率为0时,经分析,不满足,当的斜率不为0时,可设方程为,与椭圆方程联立,消元,得到关于的一元二次方程,设, ,由,得,于是可以根据前面的关系式求出的值,得到直线方程.
试题解析:(Ⅰ)由已知可得, ,解得, ,
所以椭圆Γ的方程为.
(Ⅱ)由已知N的坐标为,
当直线斜率为0时,直线为轴,易知不成立.
当直线斜率不为0时,设直线的方程为,
代入,整理得, ,
设, 则
,① ,②
由,得,③
由①②③解得.
所以直线的方程为,即.
练习册系列答案
相关题目
【题目】(本小题满分12分)某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢 | 不喜欢 | 合计 | |
大于40岁 | 20 | 5 | 25 |
20岁至40岁 | 10 | 20 | 30 |
合计 | 30 | 25 | 55 |
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)