题目内容

已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.若函数f(x)-g(x)≥m+1的解集为R,求m的取值范围.
(-∞,-3]

【解题指南】本题关键是转化题中的条件为求f(x)-g(x)的最小值,求解时结合绝对值三角不等式.
f(x)-g(x)=|x-3|+|x+1|-6,
解:因为x∈R,由绝对值三角不等式得f(x)-g(x)=|x-3|+|x+1|-6=|3-x|+|x+1|-6≥
|(3-x)+(x+1)|-6=4-6=-2,
于是有m+1≤-2,得m≤-3,
即m的取值范围是(-∞,-3].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网