题目内容
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由算得,
0.050 | 0.010 | 0.001 | |
| 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是 ( )
A. 在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别无关”
C. 有99.9%以上的把握认为“爱好该项运动与性别有关”
D. 有99.9%以上的把握认为“爱好该项运动与性别无关”
【答案】A
【解析】
根据所给的2×2列联表得到求观测值所用的数据,把数据代入观测值公式中,求出观测值,同所给的临界值表进行比较,即可得到结果.
由观测值K27.8>6.635,结合临界值表可知:在犯错误的概率不超过1%的前提下(有99%以上的把握),认为“爱好该项运动与性别有关”,
故选:A.
练习册系列答案
相关题目
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.