题目内容
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知 .
(1)求角B的大小;
(2)若b= ,a+c=3,求△ABC的面积.
【答案】
(1)解:△ABC中,∵ ,
∴ = ,
∴ac+c2=b2﹣a2,
∴c2+a2﹣b2=﹣ac,
∴cosB= =﹣ =﹣ ,
∴B=
(2)解:∵b= ,a+c=3,
∴b2=a2+c2﹣2accosB=a2+c2﹣2accos =(a+c)2﹣ac=9﹣ac=8,
∴ac=1;
∴△ABC的面积为S= acsin = ×1× =
【解析】(1)根据正弦定理化 ,再根据余弦定理求出B的值;(2)利用余弦定理求出ac的值,再求△ABC的面积.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.
练习册系列答案
相关题目
【题目】据统计,截至2016年底全国微信注册用户数量已经突破9.27亿,为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量(个) | 频数 | 频率 |
0~4 | 0.15 | |
5~8 | 40 | 0.4 |
9~12 | 25 | |
13~16 | a | c |
16以上 | 5 | b |
合计 | 100 | 1 |
(Ⅰ)求a,b,c的值及样本中微信群个数超过12的概率;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(Ⅲ)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过12的人数,求X的分布列和数学期望E(X).