ÌâÄ¿ÄÚÈÝ

2£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ËüµÄËĸö¶¥µãÁ¬³ÉµÄÁâÐεÄÃæ»ýΪ8$\sqrt{2}$£®¹ý¶¯µãP£¨²»ÔÚxÖáÉÏ£©µÄÖ±ÏßPF1£¬PF2ÓëÍÖÔ²µÄ½»µã·Ö±ðΪA£¬BºÍC£¬D£®
£¨1£©Çó´ËÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚµãP£¬Ê¹|AB|=2|CD|£¬Èô´æÔÚÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ö±½Ó¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©·ÖÖ±ÏßPF2µÄбÂÊ´æÔÚÓë²»´æÔÚÁ½ÖÖÇé¿öÌÖÂÛ¼´¿É£»

½â´ð ½â£º½â£º£¨1£©¡ßS=2ab=8$\sqrt{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬ÇÒa£¾b£¾0£¬
¡àa=2$\sqrt{2}$£¬b=c=2£¬
¡àËùÇóµÄÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©½áÂÛ£º²»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£®
ÀíÓÉÈçÏ£º
Èô|AB|=2|CD|³ÉÁ¢£¬µãP±ØÔÚyÖáµÄÓҲ࣬
¹ÊÖ±ÏßPF1±Ø´æÔÚÉèΪk1£¬
µ±Ö±ÏßPF2µÄбÂÊ´æÔÚʱÉèΪk2£¬
´ËʱÓÐÖ±ÏßPF1ÓÉy=k1£¨x+2£©´úÈë$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£¬
ÏûÈ¥yÕûÀíµÃ£¬£¨1+2k12£©x2+8k12x+8£¨k12-1£©=0
Ö±ÏßPF1Ϊ£ºy=k1£¨x+2£©£¬Ö±ÏßPF2Ϊ£ºy=k2£¨x-2£©£¬
ÓÉΤ´ï¶¨Àí£¬µÃx1+x2=-$\frac{8{k}_{1}^{2}}{1+2{k}_{1}^{2}}$£¬${x}_{1}{x}_{2}=\frac{8£¨{k}_{1}^{2}-1£©}{1+2{k}_{1}^{2}}$
¡à$|AB|=\sqrt{1+{k}_{1}^{2}}•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}_{1}^{2}}•\sqrt{£¨\frac{-8{k}_{1}^{2}}{1+2{k}_{1}^{2}}£©^{2}-4•\frac{8£¨{k}_{1}^{2}-1£©}{1+2{k}_{1}^{2}}}$
=4$\sqrt{2}•\frac{1+{k}_{1}^{2}}{1+2{k}_{1}^{2}}$
ͬÀí¿ÉµÃ|CD|=4$\sqrt{2}•\frac{1+{k}_{2}^{2}}{1+2{k}_{2}^{2}}$
Èô|AB|=2|CD³ÉÁ¢£®ÔòÓÐ$\frac{1+{k}_{1}^{2}}{1+2{k}_{1}^{2}}=2•\frac{1+{k}_{2}^{2}}{1+2{k}_{2}^{2}}$
ÕûÀíµÃ£º2k12k22+3k12+1=0£¬
ÒòΪ´Ë·½³ÌÎÞʵÊý½â£¬ËùÒÔ²»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£®
µ±Ö±ÏßPF2µÄбÂʲ»´æÔÚʱ£¬|CD|=$\frac{2{b}^{2}}{a}$=2$\sqrt{2}$£¬
´Ëʱ|AB|=2|CD|=4$\sqrt{2}$=2a²»³ÉÁ¢£®
×ÛÉϿɵ㬲»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£»

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø