题目内容
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
【答案】(Ⅰ) 函数v(x)的表达式
(Ⅱ) 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
【解析】试题分析:(Ⅰ)由题意知当0≤x≤20时,v(x)=60. 当20<x≤200时,设函数。由题意可知 ,代入求得 的值。(Ⅱ)由(Ⅰ)可得 ,分别求两段函数的最大值,哪个大就是函数的最大值。当0≤x≤20时,利用一次函数的单调性来求;当20<x≤200时,因为 等于定值200,所以可由基本不等式求最大值。
试题解析:(Ⅰ) 由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b
再由已知得,解得
故函数v(x)的表达式为.
(Ⅱ)依题并由(Ⅰ)可得
当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200
当20≤x≤200时,
当且仅当x=200﹣x,即x=100时,等号成立.
所以,当x=100时,f(x)在区间(20,200]上取得最大值.
综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,
即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
答:(Ⅰ) 函数v(x)的表达式
(Ⅱ) 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.