题目内容

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析: (Ⅰ)先求出函数的导函数,将代入可得在此切点处的斜率,再由曲线方程可求出切点坐标,利用点斜式式写出切线方程; (Ⅱ)求出的导函数函数,令为,再求的导函数,去判断的单调性,再进一步判断的单调性,可求出的最小值,将恒成立问题转为关于的不等式即可.注意对的分类讨论.

试题解析:(Ⅰ)当时,有

又因为

∴曲线在点处的切线方程为,即

(Ⅱ)因为,令

)且函数上单调递增

时,有,此时函数上单调递增,则

(ⅰ)若时,有函数上单调递增,

恒成立;

时,则在存在

此时函数 上单调递减, 上单调递增且

所以不等式不可能恒成立,故不符合题意;

时,有存在,此时上单调递减, 上单调递增所以函数上先减后增

,则函数上先减后增

所以不等式不可能恒成立,故不符合题意;

综上所述,实数的取值范围为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网