题目内容
【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
【答案】(1)见解析;(2)1:1.
【解析】试题分析:(1)取的中点,由等腰三角形及等边三角形的性质得, ,再根据线面垂直的判定定理得平面,即得AC⊥BD;(2)先由AE⊥EC,结合平面几何知识确定,再根据锥体的体积公式得所求体积之比为1:1.
试题解析:
(1)取AC的中点O,连结DO,BO.
因为AD=CD,所以AC⊥DO.
又由于是正三角形,所以AC⊥BO.
从而AC⊥平面DOB,故AC⊥BD.
(2)连结EO.
由(1)及题设知∠ADC=90°,所以DO=AO.
在中, .
又AB=BD,所以
,故∠DOB=90°.
由题设知为直角三角形,所以.
又是正三角形,且AB=BD,所以.
故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为1:1.
练习册系列答案
相关题目