题目内容
一个盛满水的密闭三棱锥容器S-ABC,不久发现三条侧棱上各有一个小洞D,E,F,且知SD∶DA=SE∶EB=CF∶FS=2∶1,若仍用这个容器盛水,则最多可盛原来水的( )
A. | B. | C. | D. |
D
解:如右图所示,过DE作与底面ABC平行的截面DEM,则M为SC的中点,F为SM的中点.过F作与底面ABC平行的截面FNP,则N,P分别为SD,SE的中点.
设三棱锥S-ABC的体积为V,高为H,S-DEM的体积为V1,高为h,则h:H=2:3,v1:v=8:27
三棱锥F-DEM的体积与三棱锥S-DEM的体积的比是1:2(高的比),∴三棱锥F-DEM的体积4v:27
三棱台DEM-ABC的体积=V-V1=19v:27,∴最多可盛水的容积23v:27
故最多所盛水的体积是原来的,选D
设三棱锥S-ABC的体积为V,高为H,S-DEM的体积为V1,高为h,则h:H=2:3,v1:v=8:27
三棱锥F-DEM的体积与三棱锥S-DEM的体积的比是1:2(高的比),∴三棱锥F-DEM的体积4v:27
三棱台DEM-ABC的体积=V-V1=19v:27,∴最多可盛水的容积23v:27
故最多所盛水的体积是原来的,选D
练习册系列答案
相关题目