题目内容
【题目】一次考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有7道题的答案是正确的,其余题中:有一道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.试求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)所得分数的数学期望(用小数表示,精确到0.01k^s*5#u)
【答案】(Ⅰ);(Ⅱ)40.42.
【解析】
(1)由题意总共10道题,由这10题的特点为已确定其中有7道题的答案是正确的,而其余题中有两道可以判断出一个选项是错误的,还有一道题因不了解题意只能乱猜,所以在其余的3道题中,有2道题答对的概率为,还有1道答对的概率为,所以利用相互独立事件的概率公式即可求解;
(2)由题意该考生得分的范围为{35,40,45,50},而每一个结果对应一个事件,事件之间为独立事件,互斥事件,利用概率公式即可得到得分的分布列,代入期望公式即可.
(Ⅰ)设“可判断两个选项是错误的”两道题之一选对的为事件A,“有一道题可判断一个选项是错误”选对的为事件B,“有一道题不理解题意”选对的为事件C,
,,,
得50分的概率为. k^s*5#u
(Ⅱ)得35分的概率为:;
得40分的概率为:;
得45分的概率为:
;
得50分的概率为:
.
所以.
【题目】某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了所学校,并组织专家对两个必检指标进行考核评分.其中分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为(优秀)、(良好)、(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为等级的共有所学校.已知两项指标均为等级的概率为0.21.
(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面列联表,并根据列联表判断是否有的把握认为“学校的基础设施建设”和“学校的师资力量”有关;
师资力量(优秀) | 师资力量(非优秀) | 合计 | |
基础设施建设(优秀) | |||
基础设施建设(非优秀) | |||
合计 |
(2)在该样本的“学校的师资力量”为等级的学校中,若,记随机变量,求的分布列和数学期望.
附:
【题目】下表是某厂生产某种产品的过程中记录的几组数据,其中表示产量(单位:吨),表示生产中消耗的煤的数量(单位:吨).
(1)试在给出的坐标系下作出散点图,根据散点图判断,在与中,哪一个方程更适合作为变量关于的回归方程模型?(给出判断即可,不需要说明理由)
(2)根据(1)的结果以及表中数据,建立变量关于的回归方程.并估计生产吨产品需要准备多少吨煤.参考公式:.