题目内容
【题目】已知α∈,β∈,cos β=-,sin(α+β)=.
(1)求tan 2β的值;
(2)求α的值.
【答案】(1);(2).
【解析】
(1)由已知利用同角三角函数基本关系式可求sinβ,tanβ,再利用二倍角的正切函数公式求解得tan2β的值;(2)由已知可求α+β∈(),利用同角三角函数基本关系式可求cos(α+β),再利用两角差的余弦函数公式可得cosα的值,根据α的范围,从而确定α的值.
(1)因为β∈,cos β=-,可得sin β=,所以tan β==-2,
故tan 2β=.
(2)因为α∈,β∈,所以α+β∈,又因为sin(α+β)=,
所以cos(α+β)=-=-,
于是cos α=cos(α+β-β)=cos(α+β)cos β+sin(α+β)sin β=,
由于α∈,故.
练习册系列答案
相关题目