题目内容
【题目】已知点A(sin 2x,1),B,设函数f(x)=(x∈R),其中O为坐标原点.
(1)求函数f(x)的最小正周期;
(2)当x∈时,求函数f(x)的最大值与最小值;
(3)求函数f(x)的单调减区间.
【答案】(1)T=π;(2)最大值和最小值分别为1和-;(3),k∈Z.
【解析】
(1)由条件利用两个向量的数量积的公式,三角恒等变换求得f(x)的解析式,再利用正弦函数的周期性求得函数f(x)的最小正周期;(2)当x∈[0,]时,利用正弦函数的定义域和值域,求得函数f(x)的最大值与最小值;(3)由条件利用正弦函数的减区间求得函数f(x)的单调减区间.
(1)∵A(sin 2x,1),B,
∴=(sin 2x,1),
,
∴f(x)==sin 2x+cos
=sin 2x+cos 2xcos -sin 2xsin
=sin 2x+cos 2x
=sin 2xcos +cos 2xsin
=sin.
故f(x)的最小正周期T==π.
(2)∵0≤x≤,
∴≤2x+,
∴-≤sin≤1,
∴f(x)的最大值和最小值分别为1和-.
(3)由+2kπ≤2x++2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z,
∴f(x)的单调减区间是,k∈Z.
练习册系列答案
相关题目