题目内容

【题目】已知函数,x∈(b﹣3,2b)是奇函数,

(1)求a,b的值;

(2)若f(x)是区间(b﹣3,2b)上的减函数且f(m﹣1)+f(2m+1)>0,求实数m的取值范围.

【答案】(1);(2)

【解析】

(1)根据奇函数性质可得定义域关于原点对称解得b,再根据f(0)=0解得a,(2)根据奇函数性质以及单调性化简不等式,解不等式得实数m的取值范围.

(1)∵函数f(x)=1﹣,x∈(b﹣3,2b)是奇函数,

∴f(0)=1﹣=0,且b﹣3+2b=0,即a=2,b=1.

(2)∵f(m﹣1)+f(2m+1)>0,

∴f(m﹣1)>﹣f(2m+1).

f(x)是奇函数,∴f(m﹣1)>f(﹣2m﹣1),

f(x)是区间(﹣2,2)上的减函数,

,即有

∴﹣1<m<0,则实数m的取值范围是(﹣1,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网