题目内容
【题目】如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.
(1)求证:BC1∥平面A1CD;
(2)若四边形BCC1B1是正方形,且A1D= ,求直线A1D与平面CBB1C1所成角的正弦值.
【答案】
(1)证明:连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,
∵D为AB的中点,
∴DO∥BC1,
∵BC1平面A1CD,DO平面A1CD,
∴BC1∥平面A1CD
(2)解:∵底面△ABC是边长为2等边三角形,D为AB的中点,
四边形BCC1B1是正方形,且A1D= ,
∴CD⊥AB,CD= = ,AD=1,
∴AD2+AA12=A1D2,∴AA1⊥AB,
∵ ,∴ ,
∴CD⊥DA1,又DA1∩AB=D,
∴CD⊥平面ABB1A1,∵BB1平面ABB1A1,∴BB1⊥CD,
∵矩形BCC1B1,∴BB1⊥BC,
∵BC∩CD=C∴BB1⊥平面ABC,
∵底面△ABC是等边三角形,
∴三棱柱ABC﹣A1B1C1是正三棱柱.
以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,
B(2,0,0),A(1,0, ),D( ,0, ),A1(1,2, ),
=( ,﹣2,﹣ ),平面CBB1C1的法向量 =(0,0,1),
设直线A1D与平面CBB1C1所成角为θ,
则sinθ= = = .
∴直线A1D与平面CBB1C1所成角的正弦值为 .
【解析】(1)连AC1 , 设AC1与A1C相交于点O,先利用中位线定理证明DO∥BC1 , 再利用线面平行的判定定理证明结论即可.(2)推导出三棱柱ABC﹣A1B1C1是正三棱柱,以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线A1D与平面CBB1C1所成角的正弦值.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对空间角异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | A | ||
女 | |||
合计 | B |
(1)根据已知条件求出上面的列联表中的A和B;用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)为了研究心肺疾病是否与性别有关,请计算出统计量,并说明是否有的把握认为心肺疾病与性别有关?
下面的临界值表供参考:
参考公式: ,其中.
【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.
学期 | 1 | 2 | 3 | 4 | 5 | 6 |
总分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)请根据上表提供的数据,用相关系数说明与的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);
(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.
参考公式: ,;
相关系数;
参考数据:,.