题目内容
(本小题满分13分)已知函数
(
),其中
自然对数的底数。
(1)若函数图象在
处的切线方程为
,求
的值;
(2)求函数
的单调区间;
(3)设函数
,当
时,存在
使得
成立,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746043786.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746059403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746075264.png)
(1)若函数图象在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746090367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746106618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746121283.png)
(2)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746137447.png)
(3)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746153837.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746168347.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746184642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746199598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746215267.png)
(1)
(2)
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746262809.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746231378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746246693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746262809.png)
(1)由已知,
, 1分
切线
的斜率为
,即
, 2分
解得
; 3分
(2)由(1)
,
.
若
<0,由
>0可得
<
,
<0可得
>![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746433464.png)
的单增区间为
,单减区间为
5分
若
>0,由
>0可得
>
,
<0可得
<![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746433464.png)
的单增区间为
,单减区间为
7分
(3)当
时,由(1)可知
在区间
上单增,在区间
上单减
则
8分
由
知![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746886895.png)
易知
在区间
上单减,在区间
上单增。
则
11分
则存在
使得
成立等价于![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050747011801.png)
即
,即
13分
【考点定位】本题主要考查导数的计算,导数的几何意义及应用导数研究函数的单调性、极值,考查辅助函数证明不等式,意在考查考生的运算能力、分析问题、解决问题的能力、转化与化归思想及创新意识.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746277983.png)
切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746106618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746309302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240507463241067.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746231378.png)
(2)由(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746277983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746371434.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746121283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746402503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746418266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746433464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746402503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746418266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746433464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746480473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746246693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746605712.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746121283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746402503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746418266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746433464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746402503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746418266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746433464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746480473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746605712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746246693.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746168347.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746137447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746823480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746839548.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746855869.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746153837.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746886895.png)
易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746901442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746823480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746839548.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746964774.png)
则存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746184642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746199598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050747011801.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050747026641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050746262809.png)
【考点定位】本题主要考查导数的计算,导数的几何意义及应用导数研究函数的单调性、极值,考查辅助函数证明不等式,意在考查考生的运算能力、分析问题、解决问题的能力、转化与化归思想及创新意识.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目