题目内容

5.已知定义在R上的奇函数f(x),当x∈(0,+∞)时的解析式为f(x)=-x2+4x-3.
(1)求这个函数在R上的解析式;
(2)作出f(x)的图象,并根据图象直接写出函数f(x)的单调区间.

分析 (1)根据当x∈(0,+∞)时的解析式,利用奇函数的性质,求得x≤0时函数的解析式,从而得到函数在R上的解析式.
(2)根据函数的解析式、奇函数的性质,作出函数的图象,数形结合可得函数f(x)的单调区间.

解答 解:(1)当x<0时,-x>0,∵f(x)为R上的奇函数,∴f(-x)=-f(x),
∴f(x)=-f(-x)=-[-(-x)2+4(-x)-3]=x2+4x+3,
即x<0时,f(x)=x2+4x+3.
当x=0时,由f(-x)=-f(x)得:f(0)=0,
所以,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,}&{x>0}\\{0,}&{x=0}\\{{x}^{2}+4x+3,}&{x<0}\end{array}\right.$.       
(2)作出f(x)的图象(如图所示)
数形结合可得函数f(x)的减区间:
(-∞,-2)、(2,+∞);增区间为[-2,0)、(0,2].

点评 本题主要考查利用函数的奇偶性求函数的解析式,作函数的图象,求函数的单调区间,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网