题目内容
设函数
(其中
).
(1) 当
时,求函数
的单调区间;
(2) 当
时,求函数
在
上的最大值
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138267874.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138283451.png)
(1) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138314363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138345495.png)
(2) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138376730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138345495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138408430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138423399.png)
(1) 函数
的递减区间为
,递增区间为
,
;
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138532695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138345495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138470580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138486550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138501647.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138532695.png)
试题分析:(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138548822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138564901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138345495.png)
(2)
试题解析:
解:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138314363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138548822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240551386261463.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138642607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138673404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138688513.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138704266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138735683.png)
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
右表可知,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138345495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138470580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138486550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138501647.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240551391721619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138642607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138673404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139234695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139250795.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139266911.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139281521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139312575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139437967.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139453648.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139484772.png)
所以当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139500868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139515618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139546915.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139562622.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240551395781874.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139609932.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139624941.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139640744.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139671900.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139687544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139312575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240551397341544.png)
所以存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139749740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139780635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139796876.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139812623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139827645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139858617.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139890524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139890720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139905515.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240551399361441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139952629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055139312575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138314363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138345495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055138408430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055140030867.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |